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ABSTRACT 

Magnetic fields are crucial in controlling flows in various physical processes of industrial 

significance. One such process is the continuous casting of steel, where different magnetic field 

configurations are used to control the turbulent flow of steel in the mold in order to minimize 

defects in the cast steel. The present study has been undertaken to understand the effects of a 

magnetic field on mean velocities and turbulence parameters in turbulent molten metal flow 

through a square duct. The coupled Navier-Stokes-MHD equations have been solved using a 

three-dimensional fractional-step numerical procedure. The Reynolds number was kept low in 

order to resolve all the scales in the flow without using a sub-grid scale turbulence model. 

Computations were performed with three different grid resolutions, the finest grid having 8.4 

million cells.  Because liquid metals have low magnetic Reynolds number, the induced magnetic 

field has been considered negligible and the electric potential method for magnetic field-flow 

coupling has been implemented. After validation of the computer code, computations of 

turbulent flow in a square duct with different Hartmann numbers were performed until complete 

laminarization of the flow. The time-dependent and time-averaged nature of the flow have been 
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examined through distribution of mean velocities, turbulent fluctuations, vorticity and turbulent 

kinetic energy budgets.  

 

INTRODUCTION 

 Magnetic fields are commonly used to control flows in metal processing, MHD pumps, 

plasma and fusion technology, to name a few [1]. Continuous casting is one process using 

different types of magnetic fields in the mold to minimize defects in the final product [2]. When 

a magnetic field is applied to a flow field, it induces a current and the interaction of this current 

with the magnetic field generates a Lorentz force. This Lorentz force brakes the flow and alters 

the velocity field [3]. In case of turbulent flows, magnetic fields can relaminarize the flow and 

alter the structure of the turbulent flow significantly [4]. Consequently the friction characteristics 

and mixing phenomena in turbulent flows subjected to magnetic fields can be significantly 

different from those without a magnetic field. Tailoring the magnetic field to alter the flow in the 

mold of the continuous caster of steel is a topic of significant practical interest [2]. 

 

The common methodology used in most previous studies to simulate effects of magnetic field on 

turbulent flows has been the Reynolds-averaged approach [4-8]. However, the fundamental 

difficulty with such an approach is the modeling of the effects of the magnetic field on the 

Reynolds stresses [4]. Specifically, it is difficult to predict the suppression of turbulence and 

modification of the flow structures through the time-averaged approach [4]. Since the magnetic 

field directly acts on the turbulent fluctuations, a more rigorous method with solution of 

equations for the time-dependent three-dimensional turbulent flow is required. Recently, with the 

significant improvement in computer speed, Direct Numerical Simulations (DNS) have become 
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feasible as a complementary tool to experiments [9]. In the present work, the effects of a 

magnetic field on turbulent flow through a square duct are studied using the DNS approach.  

 

Extensive studies exist on DNS, Large Eddy Simulations (LES) and experiments of turbulence in 

a planar two-dimensional channel flow (Moin and Kim [10], Kim, Moin and Moser [11], Moser, 

Kim and Mansour [12], Moser and Moin [13], and Monty and Chong [14]). Relatively, a smaller 

number of studies have considered flow in a duct with two inhomogeneous directions [15-18]. 

The first DNS with two inhomogeneous directions was performed by Gavrilakis [15]. A finite 

difference scheme with 16 million nodes and a moderate Reynolds number of 4410 were used to 

study turbulent flow in a square duct. The turbulence-driven secondary flows along with the 

bulging of the mean streamwise velocity field were accurately predicted. The turbulent statistics 

at the wall bisectors were seen to agree with data in a planar channel. Huser and Biringen [16] 

used a time-splitting method with spectral/higher-order finite difference discretization on a 

staggered mesh to simulate a similar flow but in their study, the Reynolds number based upon 

friction velocity was higher (600 with 96x101x101 grid points). Madabhushi and Vanka [17, 18] 

performed LES and DNS of turbulent flow in a square duct using a mixed spectral-finite 

difference method. DNS at Reτ of 260 and LES at 360 were found to predict secondary flows and 

turbulence statistics accurately.  

 

The turbulent flow subjected to a magnetic field has been the subject of many previous studies 

[19-30]. Brouillette and Lykoudis (1967) carried out experiments in a high aspect ratio (5:1) duct 

and predicted laminarization under a uniform and strong magnetic field [19]. Reed and Lykoudis 

(1978) reinvestigated effects of magnetic field on turbulence in a 5.8:1 aspect ratio duct and 
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studied the effect of magnetic field on friction factor [20]. Satake, Kunugi and Smolentsev 

(2002) performed DNS to investigate turbulent pipe flow in a transverse magnetic field at a 

moderate Reynolds number of 5300 and three Hartmann numbers of 5, 10, and 20 [21]. The skin 

friction, velocity profiles, turbulent intensities and turbulent kinetic energy budget were studied 

at different circumferential directions in the pipe. At locations close to wall on the horizontal axis, 

the velocity profile was observed to become more rounded with Hartmann flattening seen at the 

top and bottom of the pipe. Lee and Choi (2001) performed DNS of flow in a channel to study 

the effect of magnetic field orientation on the pressure drop [22]. They considered streamwise, 

wall-normal and span-wise magnetic fields and found increased drag due to the Hartmann effect 

in the case of wall normal magnetic field. Kobayashi (2006) performed LES in a channel flow 

under a wall normal magnetic field [23]. Results with a Coherent Structure Smagorinsky Model 

(CSM) were compared with those using the Smagorinsky Model (SM) and Dynamic 

Smagorinsky Model (DSM). Satake, Kunugi, Takase and Ose (2006) studied the effect of 

magnetic field on wall bounded turbulence in a channel using DNS at a high Re of 45818 and 

Hartmann numbers of 32.5 and 65 [24].  A uniform magnetic field was applied normal to the 

wall and various turbulence quantities were analyzed. Large scale structures were found to 

decrease in the core of the channel. Therefore, the difference between production and dissipation 

in the turbulent kinetic energy was found to decrease upon increase of Hartmann number in the 

central region of the channel. Boeck et al [25] performed DNS studies of the effect of the wall 

normal magnetic field on a turbulent flow in a channel at different Reynolds and Hartmann 

numbers. The three-layer near wall structure consisting of viscous region, logarithmic layer and 

plateau were reported at higher Hartmann numbers. These structures were reported signifying the 

importance of viscous, turbulent and electromagnetic stresses on the streamwise momentum 
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equation. The turbulent stresses were found decaying more rapidly away from the wall than 

predicted by mixing-length models. Noguchi and Kasagi [26] also conducted the DNS in MHD 

channel flow under transverse magnetic field at Reτ=150 and Ha=6. The DNS databases of this 

as well as other calculations are maintained at http://www.thtlab.t.u-tokyo.ac.jp/. Krasnov et al. 

[27] performed DNS and LES in a channel flow under span-wise magnetic field at two Reynolds 

numbers (10,000 and 20,000) and Hartmann numbers varying over a wide range. The main effect 

of the magnetic field was seen in turbulence suppression and reduction in the momentum transfer 

in the wall normal direction. The centerline velocity increased while the mean velocity gradient 

close to wall reduced and thus reducing the drag. The coherent structures were found to be 

enlarged in the horizontal direction upon increasing the Hartmann number. From comparison of 

LES with the DNS, the dynamic Smagorinsky model was found to reproduce the changes in the 

flow more accurately. 

 

Zikanov and Thess [28, 29] studied the effect of magnetic field on turbulence using DNS in a 

classical 3-D cube with all directions having periodic boundary conditions. At a low magnetic 

interaction (Stuart) number, turbulence was found to be three-dimensional and approximately 

isotropic while turbulence suppression was seen at large Stuart numbers (strong magnetic field). 

 

Very recently, Kobayashi (2008) performed LES of the flow in a square duct with a transverse 

magnetic field. Two Reynolds numbers (Re=5300 and Re=29000) with 64x64x64 and 

128x128x128 grids respectively were used [30]. At Re=5300, the Hartmann layer as well as side-

wall layers were found to laminarize together at nearly the same Hartmann number. At the higher 
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Reynolds number (Re=29000), the top and bottom Hartmann layers laminarized first, followed 

by laminarization of the side-wall layers. 

 

In the present work, Direct Numerical Simulations of turbulent flow in a square duct subjected to 

various Hartmann numbers are conducted. The flow structures and mean velocities are studied 

for a nominal Reynolds number around 5000. The computer code is initially validated for 

turbulent flow in a channel at Reτ=178.12 without applying a magnetic field with previous work 

of Moser et al [12]. Subsequently, simulations in a non-MHD square duct are performed at 

Re=4547 and Re=5368 and results from Re=4547 calculation are compared with Gavrilakis 

(Re=4410) [15].  Further on, the simulation of laminar flow in a square duct with a transverse 

magnetic field is performed and the results are compared with previously known series solutions 

[31]. As a last validation, simulation of a turbulent MHD channel flow is performed at Reτ=150 

and Ha=6 and compared with Noguchi and Kasagi [26]. A magnetic field was then applied in the 

vertical direction of a square duct and computations with 64x64x128, 80x80x256 and 

128x128x512 cells and 1x1x2π and 1x1x16 domain sizes were performed. Mean and RMS 

velocities, Reynolds shear stresses, turbulent kinetic energy budgets, and streamwise vorticity 

budgets are collected and analyzed. The effects of magnetic field on friction losses in the duct 

are also evaluated. 

 

GOVERNING EQUATIONS FOR A MAGNETOHYDRODYNAMIC (MHD) FLOW 

It is well-known that when an electrically conducting material moves through a magnetic field, 

an electric current is induced. This induced electric current interacts with the magnetic field and 

produces a force (J x B) on the flow field, called the Lorentz force. This Lorentz force brakes the 
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flow and therefore opposes the very mechanism that created it. The following equations 

mathematically describe the flow evolution for an incompressible MHD flow [32, 3]. 

Continuity equation: 

                      0v 
                                                                                                                    (1)                                                                                            

Momentum equations (x-, y- and z-)   

      L
v vv p v F
t

          

                                                                                       (2) 

Since magnetic Reynolds number (Rem) is less than unity in liquid metals, the induced magnetic 

field due to the induced electric current can be neglected. After neglecting the induced magnetic 

field, the electric potential method can be used to determine the current and the Lorentz force by 

the following equations [3]. 

                    0LF J B 
  

                                                                                                                (3) 

                    0J v B    
                                                                                                    (4) 

                    0J 


                                                                                                                     (5) 

By inserting current from Eq.(4) into the conservation of charge Eq.(5), a Poisson equation for 

electric potential can be derived as, 

                    2
0 0 0v B B v B        
                                                                             (6) 

Where  is vorticity and external magnetic field is given as:  0 0 0 0, ,x y zB B B B


.  Above given 

governing equations can be non-dimensionalized as follows: 
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The non-dimensionalized continuity and momentum equations can be written as; 

                     * 0v 
                                                                                                                    (7) 
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                                              (8) 

                    *2 * * * *
0v B    
                                                                                                   (9) 

                  * * * * *
0J v B   

                                                                                                    (10) 

There are essentially two independent non-dimensional parameters (Reynolds and Hartmann 

numbers) that govern the flow field and are defined based upon hydraulic diameter ( hD ) and 

bulk axial velocity ( bW ) as, 

                  0Re Hah b
h

D W D B 
 

                                                                              (11) 

 

PHYSICAL DOMAIN AND BOUNDARY CONDITIONS 

Initially, for the validation purpose, the turbulent channel flows with and without MHD have 

been simulated and compared with previous DNS work [12, 26]. Figure 1 shows the physical and 

computational domain for the turbulent channel flow with other details (the mesh and domain 

sizes, mesh stretching, averaging time and Reynolds and Hartmann numbers etc.) on the runs 

given in Table. 1. The non-uniform mesh was used in the wall normal direction as per the 

stretching factor given below Table. 1. The streamwise and span-wise directions were considered 
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periodic with top and bottom walls as no-slip and insulated. In MHD channel, the magnetic field 

is applied in vertical direction, as given in Fig. 1. In addition to the above mentioned boundary 

conditions, in the MHD channel, the span-wise direction requires one more additional condition 

on mean electric potential gradient. For this purpose, the open-circuit condition in span-wise 

direction was assumed and the mean electric potential gradient as proposed by Lee and Choi [22] 

was implemented. In channel flow runs, a constant streamwise pressure gradient ( /p z  ) was 

fixed corresponding to the given Reτ (178.12 and 150) and bulk Reynolds number was allowed 

to change. 

 

Figure 2 presents the physical and computational domains considered for square duct in this 

study. Two directions of the domain are bounded by walls, whereas the main flow direction is 

considered to be periodic. The size of the domain is 1x1x2π and 1x1x16 for the different meshes. 

For periodic boundary conditions, domain size should be at least twice the distance for which 

two-point velocity fluctuation correlation is zero [10]. Domain length of 2π or more seems 

adequate for the current case as proposed by Madabhushi and Vanka [17]. The preceding domain 

requirement still needs verification in MHD duct flow and therefore is also a subject of current 

study. The domain is discretized with 64x64x128, 80x80x256 and 128x128x512 cells for the 

different cases studied. Table 2 presents various cases simulated for square duct flow in the 

current study with various details (like domain and mesh sizes, grid stretching, Reynolds and 

Hartmann number etc.) given. The non-uniform grids were used in wall normal directions with 

stretching factors given below Table. 2. A constant and uniform magnetic field is applied in the 

vertical (y-) direction. In all the runs the streamwise pressure gradient ( /p z  ) was fixed and 

the bulk Reynolds number was allowed to change. In all the square duct MHD runs, the 
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streamwise pressure gradient was fixed corresponding to Reτ=361. No-slip and insulated wall 

boundary conditions have been used for the side and top and bottom walls. Thus, 

 

                    * 0v 
 , 

*
*

*0 0yJ
y


  


  (top and bottom walls)                                              

                    * 0v 
 , 

*
*

*0 0xJ
x


  


  (right and left walls)                                                    (12) 

 

NUMERICAL METHOD 

The above coupled equations have been discretized using the Finite Volume Method (FVM) on a 

structured Cartesian staggered grid. Pressure-velocity coupling is resolved through the fractional 

step method [33] with explicit formulation of the diffusion and convection terms in the 

momentum equations. The method consists of the following steps.  

x-momentum equation: 
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y-momentum equation: 
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z-momentum equation: 
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where * * *'p p p  . 

Convection and diffusion terms have been discretized using the second order central differencing 

scheme in space. Time integration has been achieved using explicit second order Adams-

Bashforth scheme. A multigrid solver is used to solve the Pressure Poisson Equation (PPE). 

Neumann boundary conditions are used at the walls for the pressure fluctuations ( *'p ). The 

Electric Potential Poisson Equation (EPPE) is solved for *  also using a multigrid solver. The 

Lorentz force  * *J B
 

 is then calculated and added as an explicit source term in momentum 

equations. All the calculations have been performed on a CPU (1.6 Ghz Itanium processor) based 

code written in FORTRAN except the finest calculations which have been performed by 
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extending CU-FLOW (A Graphic processing Units (GPUs) based code) [34] with MHD modules 

[35] and vorticity, TKE budgets routines. 

 

RESULTS AND DISCUSSION 

Results without the magnetic field 

We now present the results of the various calculations performed in this study. First, without a 

magnetic field, results at Reτ=178.12 with 128x128x512 grid are compared with those of Moser 

et al [12]. Figures 3(a) and 3(b) give the comparisons of normalized mean axial velocity and 

RMS of velocity fluctuations respectively. The mean axial velocity and the RMS of velocity 

fluctuations are found to match very closely with the DNS of Moser et al [12].  

 

Subsequently, the results in a square duct without a magnetic field for Re=4547 and 80x80x256 

grid are compared with those of Gavrilakis [15] for a Reynolds number of 4410. Figures 4(a) and 

(b) give (snapshots) the instantaneous and the time-averaged flow fields, shown through contours 

of the streamwise velocity and cross-sectional velocity vectors. The secondary flows generated 

by the anisotropic turbulence stresses are clearly captured. These secondary velocities are 

directed from the center towards the corners and cause bulging in contours of the streamwise 

velocity. Figure 4(c) shows an instantaneous picture of the flow at a y+ of 15. Regions of high 

and low speed streaks are clearly visible signifying the near wall sweeps and bursts in the x-z 

plane.  

 

Figure 5(a) shows a comparison of the normalized mean axial velocity with results of Gavrilakis 

[15] at Re=4410. The mean axial velocity along the horizontal bi-sector from the current 
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simulation is found to match well with results of Gavrilakis. Figure 5(b) shows a comparison of 

the normalized axial velocity along the diagonal of the duct. Again, normalized velocity matched 

with Gavrilakis [15] closely. Figure 5(c) presents comparison of RMS of axial velocity 

fluctuations with Gavrilakis [15] which also match closely with each other except for a minor 

disagreement probably due to the slightly different Reynolds number. 

 

Results with a magnetic field 

Figure 6 shows comparisons of the normalized axial velocity with analytical series solution of 

Muller and Buhler [31] for a laminarized square duct flow in the presence of a strong transverse 

magnetic field. Here the flow was initiated with a mean axial pressure gradient ( /p z  ) 

corresponding to Reτ=372 (corresponds to bulk Re ~ 5368 with 64x64x128 grids) (calculated 

based upon hydraulic diameter) and a perturbation (1% of the mean) in the three directional 

velocities was applied for the initial 1500 timesteps to initiate turbulence. A strong magnetic 

field corresponding to Ha=60 was then applied. The strong magnetic field was found to 

annihilate turbulence followed by flattening of the velocity profile close to top and bottom walls. 

The suppression of turbulence reduces the frictional losses but subsequent velocity flattening 

close to top and bottom walls supersedes this reduction and increases friction losses, thus 

reducing the bulk Reynolds number from ~5368 to 3900. The axial velocity along the horizontal 

bisector showed dampening of turbulence with a parabolic profile (hydrodynamic laminar 

profile) but the effect of velocity flattening is relatively smaller at this location. The velocity 

along the vertical bisector showed strong turbulence dampening followed by the velocity 

flattening. The axial velocity profiles match closely with the series solutions.  
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Figures 7(a) and 7(b) present comparisons of normalized mean axial velocity and RMS of 

velocity fluctuations with the DNS results of Noguchi and Kasagi (1994) at Reτ=150 and Ha=6 

in a channel. The current mean as well as RMS of velocity fluctuations matched closely with the 

results of Noguchi and Kasagi [26]. 

 

Figure 8(a) shows mean axial velocities along the horizontal bisector for three grid sizes at 

Ha=21.2 and their comparison with Kobayashi’s LES results (Re=5300, Ha=21.2) [30]. In these 

cases, flow was initiated with a mean /p z   corresponding to Reτ=361 (calculated based upon 

hydraulic diameter) with a perturbation (1% of mean axial velocity) to the three directional 

velocities. The different grids, for the same Reτ=361, resolved magnetic field-turbulence 

interaction slightly differently thus causing a slight difference in frictional losses and the bulk 

Reynolds numbers. The mean axial velocity along horizontal bisector achieved grid 

independence with the 80x80x256 grid. Figure 8(b) presents the mean axial velocity for the same 

cases along the vertical bisector. Axial velocity along this bisector with grid refinement has 

asymptotically approached grid independence on the finest mesh. The velocity along this 

bisector is seen to be more round than along the horizontal bisector. The main reason for this 

effect is the strong suppression of turbulence without velocity flattening at this Hartmann 

number close to top and bottom walls than near the side walls. Figures 8(c) and 8(d) respectively 

show the axial velocity along horizontal and vertical bisectors for various Hartmann numbers. 

Along both bisectors, mean axial velocity initially becomes more round (at Ha=21.2 and 

Ha=22.26) compared to the non-magnetic field case. Upon further increasing the Hartmann 

number (to Ha=24.38), the turbulence is completely suppressed.  The velocity along the vertical 

bisector flattens and closely follows the laminar parabolic profile along the horizontal bisector. 
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Figures 9(a) and 9(b) respectively show the instantaneous and time-averaged velocities in a 

representative cross-section for Re=5602 and Ha=21.2 case. With the magnetic field, the 

instantaneous velocities suggest weaker fluctuations close to the top and bottom walls and in the 

core than closer to side walls. It can be seen that the secondary flows are significantly modified 

in the presence of the magnetic field. Rather than going into the corners as in the non-MHD case, 

the secondary flows are now directed towards the top and bottom walls close to the corners, thus 

lifting axial velocity contours in these regions. After impinging on the walls in the corner regions, 

the secondary flows return towards the center of the top and bottom walls before heading to the 

core of the duct from top and bottom walls. This effect due to strong secondary flow from top 

and bottom walls towards the core causes strong sagging in mean axial velocity close to top and 

bottom walls. The effect of the magnetic field on the time-mean primary and secondary 

velocities is weaker close to the side walls. 

 

Figure 9(c) shows the streaky structures at a transverse plane at Y+=15 for the MHD case. 

Streaky structures in the presence of a magnetic field are more concentrated and elongated in the 

streamwise direction. A similar observation of the streaky structures in a MHD pipe flow was 

reported by Satake et al. [21]. 

 

Figure 9(d) gives the instantaneous current density lines plotted in the cross-section for laminar 

and turbulent MHD duct flows. The qualitative behavior of the current density in both flows is 

quite similar with current being parallel to magnetic field close to side walls and perpendicular to 

magnetic field in the core and close to top and bottom walls. The magnitude and direction of the 
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Lorentz force at different locations at the cross-section are mainly controlled by the current 

density magnitude and direction of current density with respect to applied magnetic field. The 

higher current perpendicular to magnetic field causes strong Lorentz force assisting the flow 

close to top and bottom walls. Weak current in the opposite direction and perpendicular to the 

magnetic field in the core gives retarding Lorentz force in the core region. At this Hartmann 

number (Ha=21.2) in the turbulent MHD duct, although the effect of the Lorentz force is small 

near the side walls (because of current being almost parallel to the magnetic field), the turbulence 

causes the current to fluctuate and become locally perpendicular to the magnetic field, resulting 

in  slight turbulence suppression in this region as well. 

 

Figure 10 presents the autocorrelation of streamwise velocity fluctuations at front-mid (0.96D, 

0.5D) and low-mid (0.5D, 0.08D) locations for Re=5602 and Ha=21.2 case. Direct spatial 

fluctuations as well as the temporal fluctuations (after converting them from time to length using 

Taylor’s frozen turbulence hypothesis) have been used for calculating the spatial auto-

correlations. Auto-correlations from both methods match closely within the approximation of a 

statistically stationary turbulent flow with turbulence intensity ( 'w ) small compared to the mean 

velocity. It can be seen in this figure that for both locations turbulence is de-correlated after 

~2.4D. This provides an estimate of the characteristics length of the longest turbulence structure. 

Hence a domain length greater than twice this value (~2x2.4D=4.8D) is sufficient to capture the 

longest scales of turbulence. At the locations of strong Lorentz force (i.e. low-mid (0.5D, 

0.08D)), the auto-correlation suggests a somewhat longer domain. A domain length of 2π is seen 

to be sufficient for both MHD and non-MHD cases.  
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Figures 11(a) and 11(b) present the RMS of axial velocity fluctuations along the horizontal and 

the vertical bisectors at Ha=21.2 respectively. As seen for the mean velocity, the grid-

independence of the axial velocity fluctuations has also been obtained. Our results agree in 

general with Kobayashi’s LES results but values in Kobayashi’s LES showed over-predictions 

along the vertical bisector and under-predict along the horizontal bisector. We believe that the 

difference may be caused by the use of the SGS model in LES calculations of Kobayashi [30].  

 

Figures 12(a) and 12(b) show the RMS of axial velocity fluctuations for different Hartmann 

numbers along horizontal and vertical bisectors respectively. The effect of the magnetic field in 

suppressing turbulence is clearly visible in the core of the duct and close to the top wall along the 

vertical bisector. At this Hartmann number, axial velocity fluctuations close to the top wall are 

suppressed by approximately 40% from the non-MHD case with a slight shift of the location of 

peak towards the core of the duct. The magnetic field has relatively smaller turbulence 

suppression in the core of the duct compared to the region close to the top wall. In a laminar duct 

flow, the current is purely parallel to the magnetic field close to side walls. Hence the magnetic 

field has no effects. However, in a turbulent duct flow, a small effect is seen close to side walls 

because the current can be sometimes locally perpendicular to the magnetic field due to 

fluctuations in the current. The effect of the magnetic field is not much different at a Hartmann 

number of 22.26. However, around Ha=24, the turbulence along both bisectors is suppressed. 

This finding of simultaneous suppression of turbulence along both bisectors is consistent with 

Kobayashi’s LES calculations (at Ha=5300 and Ha=21.2) [30].  
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Figures 13(a) and 13(b) show the RMS of horizontal and vertical velocity fluctuations along 

horizontal and vertical bisectors for the various Hartmann numbers. Since the magnetic field acts 

strongly close to the top and the bottom walls where the current is strong and perpendicular to 

the field, the horizontal and vertical velocity fluctuations are suppressed strongly at these 

locations as well. However, close to side walls, both velocity fluctuations show weaker 

suppression. The variation of horizontal velocity fluctuations close to top and bottom walls is 

quite similar to the variation of vertical velocity fluctuations close to side walls. In the core of the 

duct, both horizontal and axial velocity fluctuations attain similar values. 

 

Figures 14(a) and 14(b) show the Reynolds shear stresses ( ' 'w u , and ' 'w v ) along horizontal and 

vertical bisectors. Similar to the effects of the magnetic field on Reynolds normal stresses 

( 2 2 2' ,  ' ,  'w u v ), the Reynolds shear stress ( ' 'w v ) is also suppressed significantly close to top and 

bottom walls along the vertical bisector.  Near the side walls, the suppression of ' 'w u  is weak. 

Increasing Ha from 21.2 to 22.26 gives small additional suppression, especially in the region 

between the core and the wall.  

 

STREAMWISE VORTICITY TRANSPORT 

Streamwise vorticity is caused by the secondary velocities in the transverse plane in a turbulent 

non-circular duct flow [15]. Several researchers have studied the mechanism of its transport in a 

non magnetic duct flow with source/sinks to determine the origin of the secondary flow [15-17].  

They suggested that the Reynolds stresses are responsible for the production of mean streamwise 

vorticity in a non-MHD duct [15-17]. Gessner and Jones [36] were the first to propose that the 

difference in the second derivatives of Reynolds normal and shear stresses is responsible for the 
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vorticity generation. Lee and Choi [22] extended the above analysis for a MHD flow. The 

streamwise vorticity in the case of a MHD flow has two additional terms. The first one is a 

second derivative of the electric potential and the second is a first derivative of a velocity 

component [22]. Contribution of these two additional terms is mainly decided by the magnetic 

field orientation and flow type. For a wall normal or span-wise magnetic field in fully developed 

flow, the second derivative term of the electric potential has no contribution and only the first 

derivative of velocity acts as an additional sink. For a streamwise directed magnetic field, only 

the second derivative term of the electric potential contributes to the vorticity sink. In wall 

normal magnetic field in a developing flow, both terms have contribution to the vorticity sink. 

 

The vorticity transport equation for fully developed turbulent square duct flow under a transverse 

magnetic field ( 0 yB ) (after dropping superscript “*” from non-dimensional quantities) is written 

as, 

   
2 2 2 2 2 2

2 2 2
02 2 2 2

1 Ha ' ' ' '
Re Re

          I                               II                        III                       IV          

z z z z
y

uu v B u v u v
x y x y y y x x y

              
                        

                   V   

  (20) 

  

where mean streamwise vorticity is z
v u
x y

  
     

, I is the convection of streamwise vorticity, 

II is the viscous diffusion, III is the sink due to magnetic field, IV is the source/sink due to 

Reynolds shear stresses and V is the source/sink due to Reynolds normal stresses in the 

transverse plane. 
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Figure 15 presents the mean streamwise vorticity contours at a cross-section for a MHD and a 

non-MHD duct flow. Regions of positive and negative values signify the direction of rotation of 

secondary flows with mirror images on both sides of the diagonal bisectors signifying the 

secondary flows entering into the corners and exiting parallel to the side walls. The magnetic 

field is found to dampen the streamwise vorticity (secondary flows) across the whole cross-

section and the dampening is proportional to the first derivative of horizontal velocity in vertical 

direction (Eq-20).  The regions of high vorticity close to top and bottom walls are elongated due 

to vertical magnetic field acting on a strong vertical derivative of horizontal velocity and making 

vortices larger in this region. Exact contributions of the magnetic field to streamwise vorticity 

are presented in Fig. 16 which gives various budgets of mean streamwise vorticity. Convection is 

mainly dominant in the regions of strong vorticity gradients and secondary velocities. Since 

diffusion is governed by the Laplacian of the vorticity it is seen to have larger values between 

regions of low and high vorticity close to the walls. Second derivatives of Reynolds shear and 

normal stresses give source/sink to the vorticity very close to walls in the corners. Source terms 

caused by Reynolds shear and normal stresses are of the same order but are of opposite sign. 

This finding is consistent with previous works of Gessner and Jones [36], and Madabhushi and 

Vanka [17] in a non-magnetic duct flow. The effect of shear stress is limited to small regions 

compared to those of normal stresses especially close to top and bottom walls. The magnetic 

field makes the Reynolds normal stress terms spread in the region of elongated vorticity to act as 

a source there and thus an indirect effect of magnetic field on vorticity production via Reynolds 

normal stresses in MHD duct. The magnetic field combined with the vertical derivative of 

horizontal velocity acts as a sink to dampen the vorticity close to the top and bottom walls. It is 

necessary to note that the vorticity source caused by the magnetic field is negatively correlated 
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with the velocity derivative used to define vorticity (i.e. z
v u
x y

  
     

 and u
y



 are negatively 

correlated). Thus the magnetic field produces a sink in streamwise vorticity. 

 

TURBULENT KINETIC ENERGY BUDGET 

The turbulent kinetic energy budgets in MHD square duct flow under the transverse magnetic 

field can be derived by summing three momentum equations after multiplying with 'u , 'v , 'w  

and using averaging (again superscript “*” has been dropped from non-dimensional quantities). 

The balance can be written as the sum of various terms as: 

       0=Convection + Viscous Diffusion + Dissipation + Pressure Diffusion 
+ Production + Turbulent Diffusion + MHD Source  + MHD Sink 

                          (21) 

Convection k k ku v w
x y y
  

   
  

                                                                                                        (22) 

2 2 2

2 2 2

1Viscous diffusion
Re

k k k
x y z

   
      

                                                                                           (23) 

1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'Dissipation=
Re

u u u u u u v v v v v v w w w w w w
x x y y z z x x y y z z x x y y z z

                  
                            

     (24) 

     ' ' ' ' ' '
Pressure Diffusion 

p u p v p w
x x x

   
    
    

                                                                          (25) 

2 2 2Production ' ' ' ' ' ' ' ' ' ' ' ' ' ' 'u u u v v v w w wu u v u w v u v v w w u w v w
x y z x y z x y z

         
                    

           (26) 

2 2 2 2 2

2 2 2 2

' ' ' ' ' ' ' ' ' '
1Turbulent Diffusion
2 ' ' ' ' ' ' ' '

u u u v u w v u v v
x x x y y

v w w u w v w w
y z z z

     
    

        
            

(27)

2 ' 'MHD Source ' '
Re

Ha u w
z x
   

     
                                                                                                (28) 
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2

2 2MHD Sink ' '
Re

Ha w u                                                                                                            (29) 

 

Figure 17 shows the turbulent kinetic energy along the horizontal and vertical bisectors for 

Re=5602 and Ha=21.2. The magnetic field dampens the turbulent kinetic energy more strongly 

close to the top wall along the vertical bisector than close to the side wall along the horizontal 

bisector. Figure 18(a) presents the budget of the turbulent kinetic energy along the horizontal 

bisector. Very close to the right and left walls, turbulent kinetic energy is diffused from its peak 

region near the wall and is balanced by the viscous dissipation close to the wall. The diffusion of 

TKE also takes place towards the core but is weak in magnitude compared to the value towards 

the wall. Since production is governed by the mean velocity gradients and Reynolds stresses it 

has a maximum value in the region of peak axial normal stress. As expected, dissipation of TKE 

is the maximum close to the walls and falls off in the core. Most of the production of TKE is 

balanced by the dissipation term along the whole bisector. The source of turbulence due to MHD 

is caused by the correlation of velocity fluctuations with the derivative of electric potential, 

primarily the correlation of axial velocity fluctuations with the horizontal derivative of electric 

potential (i.e. both are perpendicular to applied magnetic field). The sink to turbulence by MHD 

is due to the Reynolds normal stresses in directions perpendicular to the field. The MHD sink 

term is qualitatively similar to the source but larger in magnitude thereby giving a net 

contribution in the reduction of TKE. This behavior of the MHD source and sink terms is 

consistent with the findings of Satake et al. [21] in the DNS of a MHD pipe flow. Convection 

and pressure diffusion terms have small contributions to the TKE budget. The qualitative 

behaviors of the non-magnetic terms in the budget are similar to those of a non-MHD duct but 

their magnitudes are different. Figure 18(b) gives the same budget along the vertical bisector. 
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These terms have smaller magnitudes along the vertical bisector because of the suppression of 

turbulence. Along this bisector, the diffusion term exhibits the same variation but is weaker in 

magnitude. The convection term is relatively stronger along this bisector. The source and sink 

terms due to MHD act in the same way along both the bisectors but are weaker along the vertical 

bisector. The net effect of the magnetic field is the suppression of turbulence along both the 

bisectors.  

 

SUMMARY AND CONCLUSIONS 

The present study has described in detail, using a DNS, the effects of a magnetic field on the 

turbulent flow in a square duct at a nominal Reynolds number of 5500. First, the code is 

validated for a turbulent flow in a non-MHD channel (Reτ=178.12) and a square duct (Re=4547 

and Re=5368(Reτ=372)), followed by validation in a laminar MHD square duct 

(Re=3900(Reτ=372), Ha=60) and a turbulent MHD channel (Reτ=150 and Ha=6) flow. 

Subsequently, simulations were performed for turbulent MHD flow in a square duct. Two 

domain sizes (1x1x2π and 1x1x16) and three grids (64x64x128, 80x80x256, and 128x128x512) 

have been used and mean as well as Reynolds normal stresses have been shown to achieve grid 

independence. For all MHD square duct runs, the simulations were performed by fixing a 

constant streamwise mean pressure gradient corresponding to Reτ=361 and varying the magnetic 

field for different Hartmann numbers. Thus the bulk Reynolds numbers varied slightly with 

Hartmann number depending upon the frictional losses and the effect of magnetic field on 

turbulence suppression and velocity flattening. Also, for different grid sizes, the resolved 

turbulence and magnetic field-turbulence interaction also contributed to the small changes in 

frictional losses and thus to the bulk Reynolds number. 
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The magnetic field affects the secondary flow significantly and shows strong bulging in the 

vertical direction close to top and bottom walls. Auto-correlation of axial velocity fluctuations 

suggested that a domain length of ~5D is enough for capturing the longest scales of turbulence.  

The velocity along the vertical bisector is found to be more round than along horizontal bisector 

at Ha=21.2 because of stronger turbulence suppression along this bisector. Further increase in 

Hartmann number (at Ha=24.38), makes velocity flattening dominant along the vertical bisector 

but the profile along the horizontal bisector becomes more round due to complete turbulence 

suppression. Streaky structures get concentrated and elongated along streamwise direction under 

the influence of a transverse magnetic field. Because the electric current is strong and 

perpendicular to the magnetic field in the region close to top and bottom walls, the magnetic 

field suppresses the local turbulence. Close to the side walls the effect of magnetic field is weak 

due to the current being parallel to field. The Reynolds shear stress ( ' 'w v ) shows strong 

suppression along vertical bisector than ' 'w u  along the horizontal bisector. 

 

Streamwise vorticity is suppressed directly by the magnetic field via the first derivative of 

horizontal velocity and indirectly via second derivatives of Reynolds normal and shear stresses, 

but more strongly via Reynolds normal stresses ( ' ', ' 'u u v v ). The magnetic field produces a sink 

as well as a source to turbulent kinetic energy. Their variations along the bisectors are similar but 

the sink is stronger and causes a net reduction of turbulence due to a magnetic field. 
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Table. 1 Computational details for non-MHD and MHD channel cases for validation 

Reτ(=δuτ/ν) 

δ: half channel 

width, (D=2δ) 

Grid 

(NxxNyxNz) 

Comp. 

 domain 

Spatial resolution 

(Δx+, Δy+, Δz+)* 

Mag.  

field 

orientation 

Ha 

( yB 



 ) 

Averaging 
time** 
 

178.12 128x128x512 2/3πx1x2π 5.82,1.40-4.86,4.37 - 0 631 

150 128x128x512 2x1x6 4.68, 1.17-4.09, 3.51 By 6 537 

 

* grids have 2% stretching in y-direction for 128x128x512 mesh and uniform in x- and z-

direction. 

** Averaging time given in convective units (δ/Wb  or 0.5D/Wb) 

 

Table. 2 Computational details for various cases 

Re Grid 

(NxxNyxNz) 

Comp. 

domain 

Spatial resolution 

(Δx+, Δy+, Δz+)*** 

Mag. field 

orientation 

Ha 

 

Wb Averaging 

time**** 

4547 80x80x256 1x1x2π 2.53-5.49,2.53-5.49,3.76 - 0 1.031 1600 

5368 64x64x128 1x1x2π 3.54-8.86, 3.54-8.86, 18.25 - 0 0.980 900 

5457 64x64x128 1x1x2π 3.44-8.60, 3.44-8.60, 17.71 By 21.2 1.030 800 

5681 80x80x256 1x1x2π 2.40-7.58, 2.40-7.58, 8.85 By 21.2 1.070 1600 

3350 80x80x256 1x1x2π 2.40-7.58, 2.40-7.58, 8.85 By 24.38 0.630 720 

5602 128x128x512 1x1x16 1.41-4.92, 1.41-4.92, 11.28 By 21.2 1.057 1600 

5647 128x128x512 1x1x16 1.41-4.92, 1.41-4.92, 11.28 By 22.26 1.065 1600 

 

*** grids have 2% stretching in x- and y-direction for all 80x80x256 and 128x128x512 meshes 

and 3% for 64x64x128 mesh with uniform in z-direction for all. 

**** Averaging time given in convective units (0.5D/Wb) 

Note: All MHD square duct runs are at Reτ=361.  

Note: Re and Ha in square duct are based upon hydraulic diameter. 
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Fig. 1 Physical and computational domain of MHD and non-MHD channel 

 

 

 

 
Fig. 2 Physical and computational domain of MHD and non-MHD square duct 
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Fig. 3(a) Comparison of normalized mean axial velocity in a turbulent channel flow 

with the previous DNS (Reτ=178.12, Moser et al, 1999) [12] 

 

 
Fig. 3(b) Comparison of normalized RMS of velocity fluctuations in a turbulent channel 

flow with the previous DNS (Reτ=178.12, Moser et al, 1999) [12] 
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Fig. 4(a) Instantaneous axial velocity contours with secondary velocity vectors 

(Re=4547, 80x80x256) for the case without a magnetic field 
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Fig. 4(b) Mean axial velocity contours with secondary velocity vectors (Re=4547, 

80x80x256) for the case without a magnetic field 

 

 

 
Fig. 4(c) Instantaneous velocity contours at y+=15 

 (Re=4547, 80x80x256) 
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Fig. 5(a) Mean velocity comparison along horizontal bisector with Gavrilakis [15] 

 

 

 
Fig. 5(b) Mean velocity comparison along diagonal with Gavrilakis [15] 
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Fig. 5(c) Comparison of RMS of axial velocity fluctuations along vertical bisector with 

Gavrilakis [15] 

 

 
Fig. 6 Comparison of laminarized results (64x64x128) with Muller & Buhler [31] 
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Fig. 7(a) Comparison of mean axial velocity in MHD channel at Reτ=150 and Ha=6 

with Noguchi and Kasagi (1994) [26] 

 

 
Fig. 7(b) Comparison of RMS of velocity fluctuations in MHD channel at Reτ=150 and 

Ha=6 with Noguchi and Kasagi (1994) [26]  
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Fig. 8(a) Mean axial velocity along horizontal bisectors with Kobayashi (2008) [30] at 

Ha=21.2 

 

 
Fig. 8(b) Mean axial velocity along vertical bisectors with Kobayashi (2008) [30] at 

Ha=21.2 
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Fig. 8(c) Mean axial velocity along horizontal bisectors in various cases 

 

 
Fig. 8(d) Mean axial velocity along vertical bisectors in various cases 
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(Re=5602, Ha=21.2, 128x128x512) 

Fig. 9(a) Instantaneous axial velocity contours with secondary velocity vectors 
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(Re=5602, Ha=21.2, 128x128x512) 

Fig. 9(b) Mean axial velocity contours with secondary velocity vectors. 

(some vectors are skipped in mean secondary velocity for better visualization) 
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(Re=5602, Ha=21.2, 128x128x512) 

Fig. 9(c) Instantaneous velocity contours at y+=15 
 

 

 

 

   
 

(Re=3350, Ha=24.38, 80x80x256)  

(Laminar case) 

(Re=5602 Ha=21.2, 128x128x512) 

(Turbulent case) 

Fig. 9(d) Instantaneous induced current lines across a cross-section 
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Fig. 10 Auto-correlation of axial velocity fluctuations (Re=5602, Ha=21.2) 
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Fig. 11(a) RMS of axial velocity fluctuations along horizontal bisector 

 

 
Fig. 11(b) RMS of axial velocity fluctuations along vertical bisector 
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Fig. 12(a) RMS of axial velocity fluctuations along horizontal bisector for various Ha 

 

 
Fig. 12(b) RMS of axial velocity fluctuations along vertical bisector for various Ha 
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Fig. 13(a) RMS of horizontal velocity fluctuations along horizontal(x-) and vertical(y-) 

bisectors 
 

 
Fig. 13(b) RMS of vertical velocity fluctuations along horizontal(x-) and vertical(y-) 

bisectors 
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Fig. 14(a) Reynolds shear stress along horizontal(x-) bisector 

 

 
Fig. 14(b) Reynolds shear stress along vertical(y-) bisector 

 

 

 



R. Chaudhary, S.P. Vanka, and B.G.Thomas, DNS of Magnetic Field Effects on a Square Duct Turbulent Flow, 
Continuous Casting Report, June 7, 2010. 

 49 

    
(a) (Re=5368, Ha=0, 64x64x128)  

(non-MHD) 

(b) (Re=5602 Ha=21.2, 128x128x512) 

(MHD) 

Fig. 15 Mean streamwise vorticity, z
v u
x y
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(Re=5602 Ha=21.2, 128x128x512, 1x1x16) 

 

Fig. 16 Various budgets of streamwise 

vorticity ( z
v u
x y
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Fig. 17 Turbulent kinetic energy along horizontal (x-) and vertical (y-) bisectors 

 

 
Fig. 18(a) TKE Budgets along horizontal(x-) bisector 
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Fig. 18(b) TKE Budgets along vertical(y-) bisector 

 

 

 

 

 

 

 

 

 


